skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dhar, Tanumoy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Abstract The dispersion of a passive colloid immersed in a bath of non-interacting and non-Brownian run-and-tumble microswimmers in two dimensions is analyzed using stochastic simulations and an asymptotic theory, both based on a minimal model of swimmer-colloid collisions characterized solely by frictionless steric interactions. We estimate the effective long-time diffusivity$${\mathscr {D}}$$ D of the suspended colloid resulting from its interaction with the active bath, and elucidate its dependence on the level of activity (persistence length of swimmer trajectories), the mobility ratio of the colloid to a swimmer, and the number density of swimmers in the bath. We also propose a semi-analytical model for the colloid diffusivity in terms of the variance and correlation time of the net fluctuating active force on the colloid resulting from swimmer collisions. Quantitative agreement is found between numerical simulations and analytical results in the experimentally-relevant regime of low swimmer density, low mobility ratio, and high activity. 
    more » « less